# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Allyl(ferrocenylmethyl)dimethylammonium perchlorate

#### Ying-Chun Wang

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: wangyc33@yahoo.com.cn

Received 8 January 2012; accepted 14 January 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.010 Å; disorder in solvent or counterion; R factor = 0.065; wR factor = 0.167; data-to-parameter ratio = 16.3.

The asymmetric unit of the title complex,  $[Fe(C_5H_5)-(C_{11}H_{17}N)]ClO_4$ , contains two independent allyl(ferrocenylmethyl)dimethylammonium cations and two  $ClO_4^-$  anions. The anions are disordered each over two sets of sites, with an occupancy ratio of 0.617 (6):0.383 (6). The distances from the Fe atoms to the centroids of the unsubstituted and substituted cyclopentadienyl (Cp) rings are 1.645 (1)/1.657 (1) and 1.644 (1)/1.647 (1) Å. The dihedral angles between the two Cp rings are 2.49 (3) and 1.45 (4)° in the two ferrocenyl groups of the cations.

### **Related literature**

For the ferroelectric properties of related amino derivatives, see: Fu *et al.* (2007, 2008, 2009, 2011*a*,*b*,*c*); Fu & Xiong (2008). For a related compound, see: Chen *et al.* (2010).



Experimental

Crystal data [Fe(C<sub>5</sub>H<sub>5</sub>)(C<sub>11</sub>H<sub>17</sub>N)]ClO<sub>4</sub>

 $M_r = 383.65$ 

Monoclinic,  $P2_1/c$  a = 15.165 (3) Å b = 10.858 (2) Å c = 25.976 (8) Å  $\beta = 123.84$  (2)° V = 3552.7 (17) Å<sup>3</sup>

### Data collection

Rigaku Mercury2 CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{\min} = 0.910, T_{\max} = 1.000$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.065 & 18 \text{ restraints} \\ wR(F^2) &= 0.167 & \text{H-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} &= 0.38 \text{ e } \text{ Å}^{-3} \\ 8130 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.32 \text{ e } \text{ Å}^{-3} \\ 500 \text{ parameters} \end{split}$$

Z = 8

Mo  $K\alpha$  radiation

 $0.10 \times 0.03 \times 0.03 \text{ mm}$ 

35474 measured reflections

8130 independent reflections

4317 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.02 \text{ mm}^{-1}$ 

T = 298 K

 $R_{\rm int} = 0.097$ 

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Doctoral Foundation of Southeast University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2506).

#### References

Chen, H., Miao, J., Zhu, P., Wang, D. & Nie, Y. (2010). Acta Cryst. E66, m22.Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.

- Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.
- Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.
- Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011a). Adv. Mater. 23, 5658–5662.
- Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011b). J. Am. Chem. Soc. 133, 12780–12786.
- Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011c). Angew. Chem. Int. Ed. 50, 11947–11951.
- Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

### Acta Cryst. (2012). E68, m180 [doi:10.1107/S1600536812001766]

## Allyl(ferrocenylmethyl)dimethylammonium perchlorate

# Y.-C. Wang

#### Comment

Simple organic salts containing amino cations have attracted attention as materials, which display ferroelectric-paraelectric phase transitions (Fu *et al.*, 2011*a*, *b*, *c*). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and a series of new materials with this kind of organic molecules have been elaborated (Fu *et al.* 2007, 2008, 2009; Fu & Xiong 2008). Herein we present the crystal structure of the title compound, which can be used as a cation in organic salts.

The asymmetric unit of the title compound contains two independent allyl(ferrocenylmethyl)dimethylammonium cations and two  $ClO_4^-$  anions. The anions are disordered each over two sets of sites, with an occupancy ratio of 0.617 (6):0.383 (6) (Fig. 1). The distances from the Fe atoms to the centroids of the unsubstituted and substituted cyclopentadienyl (Cp) rings are 1.645 (1) [1.657 (1) for another ferrocenyl group] and 1.644 (1) [1.647 (1)] Å. The dihedral angles between the two Cp rings are 2.49 (3) and 1.45 (4)° for the two ferrocenyl groups, respectively. The two Cp rings are almost eclipsed with the torsion angles of the two Cp rings (C—Cg1—Cg2—C and C—Cg3—Cg4—C) are in a range of 0.35 (5) to 1.69 (6) and 11.76 (7) to 14.49 (7)°, respectively. All bond lengths and angles are normal and comparable with those in a reported compound (Chen *et al.*, 2010).

#### Experimental

A mixture of commercial allyl(ferrocenylmethyl)dimethylamine (0.4 mmol) and HClO<sub>4</sub> (0.4 mmol) were dissolved in EtOH/ distilled water (1:1  $\nu/\nu$ ). The solution was slowly evaporated in air, affording red block-shaped crystals of the title compound suitable for X-ray analysis.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should not be a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (423 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 3.9 to 11.2).

#### Refinement

H atoms attached to C atoms were positioned geometrically and treated as riding, with C—H = 0.97 (methylene), 0.98 (ferrocenyl), 0.93 (allyl) and 0.96 (methyl) Å and with  $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$ . The ClO<sub>4</sub><sup>-</sup> anions are each disordered over two sets of sites, with an occupancy ratio of 0.617 (6):0.383 (6) for both anions.

## Figures



Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and minor disordered atoms of the perchlorate anions have been omitted for clarity.

### Allyl(ferrocenylmethyl)dimethylammonium perchlorate

| $[Fe(C_5H_5)(C_{11}H_{17}N)]ClO_4$ | F(000) = 1600                                         |
|------------------------------------|-------------------------------------------------------|
| $M_r = 383.65$                     | $D_{\rm x} = 1.434 {\rm ~Mg~m}^{-3}$                  |
| Monoclinic, $P2_1/c$               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc               | Cell parameters from 8130 reflections                 |
| a = 15.165 (3)  Å                  | $\theta = 3.0-27.5^{\circ}$                           |
| b = 10.858 (2) Å                   | $\mu = 1.02 \text{ mm}^{-1}$                          |
| c = 25.976 (8) Å                   | T = 298  K                                            |
| $\beta = 123.84 \ (2)^{\circ}$     | Block, red                                            |
| $V = 3552.7 (17) \text{ Å}^3$      | $0.10\times0.03\times0.03~mm$                         |
| Z = 8                              |                                                       |

### Data collection

| Rigaku Mercury2 CCD<br>diffractometer                             | 8130 independent reflections                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                          | 4317 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                          | $R_{\rm int} = 0.097$                                                     |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup>              | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| ω scans                                                           | $h = -19 \rightarrow 19$                                                  |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku, 2005) | $k = -14 \rightarrow 14$                                                  |
| $T_{\min} = 0.910, \ T_{\max} = 1.000$                            | <i>l</i> = −33→33                                                         |
| 35474 measured reflections                                        |                                                                           |

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.065$  $wR(F^2) = 0.167$ S = 1.01 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_0^2) + (0.0573P)^2 + 1.691P]$ 

|                  | where $P = (F_0^2 + 2F_c^2)/3$                             |
|------------------|------------------------------------------------------------|
| 8130 reflections | $(\Delta/\sigma)_{max} < 0.001$                            |
| 500 parameters   | $\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$      |
| 18 restraints    | $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x           | у           | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|------|-------------|-------------|--------------|-------------------------------|-----------|
| Fe1  | 0.20107 (4) | 0.03124 (5) | 0.11383 (3)  | 0.0524 (2)                    |           |
| N1   | 0.3530 (3)  | 0.4015 (3)  | 0.15949 (17) | 0.0648 (10)                   |           |
| C1   | 0.2102 (3)  | 0.1552 (4)  | 0.05836 (19) | 0.0578 (11)                   |           |
| H1A  | 0.1523      | 0.2079      | 0.0273       | 0.069*                        |           |
| C2   | 0.2355 (4)  | 0.0381 (5)  | 0.0479 (2)   | 0.0740 (14)                   |           |
| H2A  | 0.1974      | -0.0060     | 0.0083       | 0.089*                        |           |
| C3   | 0.3226 (4)  | -0.0066 (4) | 0.1035 (3)   | 0.0770 (15)                   |           |
| H3A  | 0.3558      | -0.0874     | 0.1094       | 0.092*                        |           |
| C4   | 0.3540 (3)  | 0.0827 (4)  | 0.1504 (2)   | 0.0666 (12)                   |           |
| H4A  | 0.4134      | 0.0759      | 0.1939       | 0.080*                        |           |
| C5   | 0.2837 (3)  | 0.1849 (4)  | 0.12223 (19) | 0.0521 (10)                   |           |
| C6   | 0.1263 (6)  | 0.0664 (6)  | 0.1571 (4)   | 0.0907 (17)                   |           |
| H6A  | 0.1307      | 0.1437      | 0.1779       | 0.109*                        |           |
| C7   | 0.1932 (5)  | -0.0324 (7) | 0.1845 (2)   | 0.0884 (17)                   |           |
| H7A  | 0.2526      | -0.0380     | 0.2280       | 0.106*                        |           |
| C8   | 0.1604 (5)  | -0.1253 (5) | 0.1394 (4)   | 0.0961 (18)                   |           |
| H8A  | 0.1914      | -0.2075     | 0.1454       | 0.115*                        |           |
| C9   | 0.0727 (5)  | -0.0770 (7) | 0.0848 (3)   | 0.097 (2)                     |           |
| H9A  | 0.0314      | -0.1196     | 0.0449       | 0.116*                        |           |
| C10  | 0.0531 (4)  | 0.0401 (7)  | 0.0968 (3)   | 0.0938 (19)                   |           |
| H10A | -0.0043     | 0.0946      | 0.0668       | 0.113*                        |           |
| C11  | 0.2828 (3)  | 0.2957 (4)  | 0.1554 (2)   | 0.0610 (11)                   |           |
| H11A | 0.3059      | 0.2719      | 0.1971       | 0.073*                        |           |
| H11B | 0.2104      | 0.3252      | 0.1346       | 0.073*                        |           |
| C12  | 0.3459 (4)  | 0.5026 (5)  | 0.1963 (3)   | 0.0912 (17)                   |           |
| H12A | 0.3888      | 0.5709      | 0.1995       | 0.137*                        |           |
| H12B | 0.3709      | 0.4730      | 0.2371       | 0.137*                        |           |
| H12C | 0.2734      | 0.5288      | 0.1760       | 0.137*                        |           |
|      |             |             |              |                               |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C13         | 0.4665 (4)  | 0.3602 (5)          | 0.1931 (2)           | 0.0823 (15)        |
|-------------|-------------|---------------------|----------------------|--------------------|
| H13A        | 0.5101      | 0.4280              | 0.1965               | 0.124*             |
| H13B        | 0.4724      | 0.2944              | 0.1705               | 0.124*             |
| H13C        | 0.4896      | 0.3319              | 0.2338               | 0.124*             |
| C14         | 0.3194 (4)  | 0.4453 (5)          | 0.0961 (2)           | 0.0828 (15)        |
| H14A        | 0.3707      | 0.5052              | 0.1005               | 0.099*             |
| H14B        | 0.3208      | 0.3759              | 0.0730               | 0.099*             |
| C15         | 0.2127 (6)  | 0.5015 (7)          | 0.0600 (3)           | 0.116 (2)          |
| H15A        | 0.1554      | 0.4514              | 0.0498               | 0.140*             |
| C16         | 0.1935 (7)  | 0.6173 (7)          | 0.0427 (3)           | 0.145 (3)          |
| H16A        | 0.2487      | 0.6704              | 0.0520               | 0.174*             |
| H16B        | 0.1240      | 0.6460              | 0.0206               | 0.174*             |
| Fe2         | 0.31426 (5) | 0.66103 (5)         | 0.38832 (3)          | 0.0577 (2)         |
| N2          | 0.1454 (3)  | 0.3021 (3)          | 0.34554 (17)         | 0.0661 (10)        |
| C17         | 0.3271 (7)  | 0.8145 (6)          | 0.3495 (5)           | 0.110 (2)          |
| H17A        | 0.2892      | 0.8922              | 0.3427               | 0.131*             |
| C18         | 0.4220 (7)  | 0.7851 (9)          | 0.3991 (3)           | 0.109 (2)          |
| H18A        | 0.4645      | 0.8378              | 0.4356               | 0.131*             |
| C19         | 0.4507 (6)  | 0.6724 (9)          | 0.3925 (4)           | 0.118 (3)          |
| H19A        | 0.5174      | 0.6302              | 0.4224               | 0.141*             |
| C20         | 0.2927 (6)  | 0.7162 (9)          | 0.3082 (3)           | 0.111 (2)          |
| H20A        | 0.2264      | 0.7120              | 0.2670               | 0.133*             |
| C21         | 0.3704 (9)  | 0.6271 (6)          | 0.3356 (5)           | 0.116 (3)          |
| H21A        | 0.3698      | 0.5476              | 0.3176               | 0.140*             |
| C22         | 0.2254 (6)  | 0.6969 (6)          | 0.4232 (4)           | 0.103 (2)          |
| H22A        | 0.2000      | 0.7784              | 0.4256               | 0.124*             |
| C23         | 0 1718 (4)  | 0.6162 (5)          | 0 3733 (3)           | 0 0792 (14)        |
| H23A        | 0.1023      | 0.6309              | 0 3350               | 0.095*             |
| C24         | 0.2357 (3)  | 0.5088 (4)          | 0.3871 (2)           | 0.0569 (11)        |
| C25         | 0 3212 (6)  | 0 6439 (6)          | 0 4686 (3)           | 0.102.(2)          |
| H25A        | 0.3746      | 0.6817              | 0 5084               | 0.123*             |
| C26         | 0.3300 (4)  | 0.5263 (5)          | 0.4473(2)            | 0.0731 (13)        |
| H26A        | 0 3893      | 0.4684              | 0.4698               | 0.088*             |
| C27         | 0.2137 (3)  | 0 4046 (4)          | 0 34492 (19)         | 0.0584(11)         |
| Н27А        | 0.2809      | 0.3694              | 0.3559               | 0.070*             |
| H27R        | 0.1786      | 0.4361              | 0.3030               | 0.070*             |
| C28         | 0.1349 (4)  | 0.4901<br>0.2021(4) | 0.3024(2)            | 0.070              |
| H28A        | 0.0928      | 0.1360              | 0.3025               | 0.127*             |
| H28R        | 0.2041      | 0.1717              | 0.3160               | 0.127*             |
| H28C        | 0.1010      | 0.2346              | 0.2612               | 0.127*             |
| C29         | 0.0382(4)   | 0.3502 (5)          | 0.2012<br>0.3243(3)  | 0.127<br>0.107 (2) |
| H29A        | -0.0070     | 0.2830              | 0.3245 (5)           | 0.167 (2)          |
| H29R        | 0.0082      | 0.3915              | 0.2853               | 0.161*             |
| H29C        | 0.0443      | 0.4071              | 0.3544               | 0.161*             |
| C30         | 0 1952 (4)  | 0 2503 (5)          | 0.4106 (2)           | 0.0807 (15)        |
| H30A        | 0.1952 (4)  | 0.2505 (5)          | 0.4382               | 0.007*             |
| H30R        | 0.1455      | 0.1934              | 0.4101               | 0.097*             |
| C31         | 0.1755      | 0.1268 (6)          | 0.7101<br>0 /250 (2) | 0.007              |
| UJ1<br>H31A | 0.2502 (5)  | 0.1000 (0)          | 0.4406               | 0.11/*             |
| 1131A       | 0.3322      | 0.2322              | 0.7700               | 0.117              |

| C32  | 0.3117 (6)   | 0.0703 (6)  | 0.4520 (3)  | 0.128 (2)    |           |
|------|--------------|-------------|-------------|--------------|-----------|
| H32A | 0.2575       | 0.0219      | 0.4480      | 0.154*       |           |
| H32B | 0.3783       | 0.0362      | 0.4677      | 0.154*       |           |
| Cl2  | 0.4518 (6)   | 0.2080 (7)  | 0.3465 (4)  | 0.0600 (15)  | 0.617 (6) |
| C11  | 0.0269 (7)   | 0.4646 (9)  | 0.1473 (4)  | 0.141 (3)    | 0.617 (6) |
| O5   | 0.5299 (16)  | 0.220 (2)   | 0.3347 (10) | 0.154 (7)    | 0.617 (6) |
| O6   | 0.5069 (7)   | 0.1523 (16) | 0.4056 (4)  | 0.139 (4)    | 0.617 (6) |
| 07   | 0.3739 (13)  | 0.1372 (19) | 0.3074 (7)  | 0.191 (8)    | 0.617 (6) |
| 08   | 0.4272 (13)  | 0.3283 (8)  | 0.3485 (12) | 0.167 (7)    | 0.617 (6) |
| 01   | 0.0203 (8)   | 0.3776 (10) | 0.1042 (4)  | 0.173 (4)    | 0.617 (6) |
| O2   | 0.1362 (6)   | 0.4198 (13) | 0.1996 (3)  | 0.153 (4)    | 0.617 (6) |
| O3   | 0.0544 (18)  | 0.579 (2)   | 0.166 (2)   | 0.311 (8)    | 0.617 (6) |
| O4   | -0.0535 (12) | 0.435 (2)   | 0.1584 (13) | 0.192 (6)    | 0.617 (6) |
| Cl2' | 0.4528 (16)  | 0.2164 (19) | 0.3435 (11) | 0.108 (5)*   | 0.383 (6) |
| C11' | 0.0375 (7)   | 0.4629 (7)  | 0.1546 (3)  | 0.0577 (16)* | 0.383 (6) |
| O3'  | -0.0217 (13) | 0.5417 (16) | 0.0974 (5)  | 0.154 (7)    | 0.383 (6) |
| O8'  | 0.3523 (15)  | 0.276 (3)   | 0.2971 (6)  | 0.145 (7)    | 0.383 (6) |
| O6'  | 0.4711 (15)  | 0.281 (3)   | 0.3921 (9)  | 0.162 (11)   | 0.383 (6) |
| 07'  | 0.408 (3)    | 0.101 (2)   | 0.341 (2)   | 0.225 (19)   | 0.383 (6) |
| O4'  | -0.014 (2)   | 0.468 (4)   | 0.180 (2)   | 0.192 (6)    | 0.383 (6) |
| O5'  | 0.511 (2)    | 0.199 (3)   | 0.3184 (12) | 0.121 (11)   | 0.383 (6) |
| O1'  | 0.104 (3)    | 0.547 (4)   | 0.178 (3)   | 0.311 (8)    | 0.383 (6) |
| O2'  | 0.0743 (17)  | 0.3640 (18) | 0.1613 (10) | 0.175 (4)    | 0.383 (6) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$     | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|--------------|------------|-------------|
| Fe1 | 0.0552 (4) | 0.0534 (4) | 0.0562 (4) | -0.0074 (3)  | 0.0356 (3) | -0.0046 (3) |
| N1  | 0.077 (2)  | 0.061 (2)  | 0.079 (3)  | -0.0210 (19) | 0.057 (2)  | -0.023 (2)  |
| C1  | 0.059 (3)  | 0.070 (3)  | 0.054 (3)  | -0.009 (2)   | 0.037 (2)  | 0.001 (2)   |
| C2  | 0.085 (4)  | 0.078 (4)  | 0.085 (4)  | -0.025 (3)   | 0.063 (3)  | -0.029 (3)  |
| C3  | 0.076 (3)  | 0.057 (3)  | 0.122 (5)  | 0.002 (2)    | 0.070 (4)  | -0.015 (3)  |
| C4  | 0.049 (2)  | 0.069 (3)  | 0.080 (3)  | -0.006 (2)   | 0.035 (2)  | -0.001 (3)  |
| C5  | 0.053 (2)  | 0.057 (3)  | 0.059 (3)  | -0.0115 (19) | 0.039 (2)  | -0.009 (2)  |
| C6  | 0.114 (5)  | 0.090 (4)  | 0.121 (5)  | -0.018 (4)   | 0.098 (5)  | -0.013 (4)  |
| C7  | 0.091 (4)  | 0.112 (5)  | 0.062 (3)  | -0.025 (4)   | 0.042 (3)  | 0.013 (3)   |
| C8  | 0.123 (5)  | 0.057 (3)  | 0.146 (6)  | -0.009 (3)   | 0.099 (5)  | 0.014 (4)   |
| C9  | 0.099 (5)  | 0.129 (6)  | 0.077 (4)  | -0.063 (4)   | 0.058 (4)  | -0.034 (4)  |
| C10 | 0.063 (3)  | 0.126 (6)  | 0.107 (5)  | 0.003 (3)    | 0.057 (4)  | 0.042 (4)   |
| C11 | 0.068 (3)  | 0.060 (3)  | 0.077 (3)  | -0.018 (2)   | 0.054 (3)  | -0.017 (2)  |
| C12 | 0.119 (4)  | 0.077 (3)  | 0.115 (4)  | -0.033 (3)   | 0.088 (4)  | -0.043 (3)  |
| C13 | 0.066 (3)  | 0.095 (4)  | 0.093 (4)  | -0.025 (3)   | 0.048 (3)  | -0.019 (3)  |
| C14 | 0.106 (4)  | 0.070 (3)  | 0.085 (4)  | -0.014 (3)   | 0.062 (4)  | -0.008 (3)  |
| C15 | 0.127 (6)  | 0.091 (5)  | 0.117 (5)  | -0.010 (4)   | 0.059 (5)  | 0.008 (4)   |
| C16 | 0.171 (7)  | 0.113 (6)  | 0.117 (6)  | 0.015 (5)    | 0.058 (5)  | 0.013 (5)   |
| Fe2 | 0.0790 (5) | 0.0511 (4) | 0.0594 (4) | -0.0075 (3)  | 0.0487 (4) | -0.0040 (3) |
| N2  | 0.076 (2)  | 0.065 (2)  | 0.080 (3)  | -0.0181 (19) | 0.058 (2)  | -0.023 (2)  |
| C17 | 0.157 (7)  | 0.065 (4)  | 0.153 (7)  | 0.006 (4)    | 0.114 (6)  | 0.031 (5)   |
|     |            |            |            |              |            |             |

| C18 | 0.118 (6)   | 0.139 (7)   | 0.094 (5)  | -0.065 (5)  | 0.073 (5)   | -0.030 (5)   |
|-----|-------------|-------------|------------|-------------|-------------|--------------|
| C19 | 0.109 (5)   | 0.143 (7)   | 0.149 (8)  | 0.033 (5)   | 0.101 (6)   | 0.056 (6)    |
| C20 | 0.132 (6)   | 0.142 (7)   | 0.057 (4)  | -0.030 (5)  | 0.052 (4)   | 0.021 (4)    |
| C21 | 0.228 (9)   | 0.070 (4)   | 0.155 (7)  | -0.037 (5)  | 0.171 (7)   | -0.021 (5)   |
| C22 | 0.153 (6)   | 0.073 (4)   | 0.153 (6)  | -0.025 (4)  | 0.128 (6)   | -0.038 (4)   |
| C23 | 0.079 (3)   | 0.069 (3)   | 0.111 (4)  | -0.004 (3)  | 0.065 (3)   | -0.006 (3)   |
| C24 | 0.069 (3)   | 0.052 (3)   | 0.069 (3)  | -0.008 (2)  | 0.050 (3)   | -0.008 (2)   |
| C25 | 0.164 (6)   | 0.105 (5)   | 0.073 (4)  | -0.072 (5)  | 0.088 (4)   | -0.040 (4)   |
| C26 | 0.090 (4)   | 0.076 (3)   | 0.053 (3)  | -0.020 (3)  | 0.040 (3)   | 0.003 (2)    |
| C27 | 0.068 (3)   | 0.057 (3)   | 0.067 (3)  | -0.011 (2)  | 0.048 (2)   | -0.009 (2)   |
| C28 | 0.109 (4)   | 0.074 (3)   | 0.087 (4)  | -0.034 (3)  | 0.065 (3)   | -0.041 (3)   |
| C29 | 0.070 (3)   | 0.107 (5)   | 0.165 (6)  | -0.017 (3)  | 0.078 (4)   | -0.027 (4)   |
| C30 | 0.124 (5)   | 0.063 (3)   | 0.090 (4)  | -0.025 (3)  | 0.081 (4)   | -0.021 (3)   |
| C31 | 0.105 (5)   | 0.088 (4)   | 0.091 (4)  | -0.010 (4)  | 0.054 (4)   | -0.003 (3)   |
| C32 | 0.159 (6)   | 0.087 (5)   | 0.121 (5)  | -0.006 (4)  | 0.068 (5)   | -0.003 (4)   |
| Cl2 | 0.0578 (19) | 0.0518 (16) | 0.083 (3)  | 0.0009 (10) | 0.0474 (18) | -0.0096 (13) |
| Cl1 | 0.085 (3)   | 0.143 (4)   | 0.182 (6)  | 0.034 (3)   | 0.066 (3)   | -0.020 (3)   |
| 05  | 0.139 (10)  | 0.120 (9)   | 0.28 (2)   | -0.016 (7)  | 0.168 (13)  | -0.030 (10)  |
| O6  | 0.143 (8)   | 0.191 (10)  | 0.073 (5)  | 0.042 (8)   | 0.054 (5)   | 0.005 (6)    |
| 07  | 0.175 (10)  | 0.200 (18)  | 0.118 (8)  | -0.128 (12) | 0.032 (8)   | -0.051 (9)   |
| 08  | 0.148 (13)  | 0.057 (5)   | 0.33 (2)   | 0.018 (6)   | 0.157 (16)  | -0.008 (10)  |
| 01  | 0.170 (8)   | 0.194 (8)   | 0.130 (7)  | 0.023 (6)   | 0.069 (7)   | -0.057 (7)   |
| 02  | 0.086 (5)   | 0.290 (13)  | 0.072 (5)  | 0.042 (7)   | 0.036 (4)   | -0.015 (6)   |
| 03  | 0.19 (2)    | 0.130 (13)  | 0.61 (3)   | 0.012 (11)  | 0.22 (2)    | -0.067 (16)  |
| O4  | 0.106 (12)  | 0.175 (13)  | 0.35 (2)   | -0.039 (7)  | 0.159 (15)  | -0.067 (10)  |
| O3' | 0.172 (14)  | 0.171 (14)  | 0.074 (8)  | 0.100 (12)  | 0.041 (8)   | 0.045 (9)    |
| O8' | 0.109 (11)  | 0.23 (2)    | 0.095 (10) | 0.066 (12)  | 0.057 (9)   | 0.005 (11)   |
| O6' | 0.100 (12)  | 0.26 (3)    | 0.092 (11) | -0.018 (16) | 0.035 (10)  | -0.080 (15)  |
| 07' | 0.39 (4)    | 0.082 (11)  | 0.41 (5)   | -0.058 (18) | 0.35 (5)    | -0.02 (2)    |
| O4' | 0.106 (12)  | 0.175 (13)  | 0.35 (2)   | -0.037 (8)  | 0.160 (15)  | -0.067 (10)  |
| O5' | 0.16 (2)    | 0.15 (2)    | 0.123 (11) | 0.078 (17)  | 0.123 (13)  | 0.053 (13)   |
| 01' | 0.19 (2)    | 0.130 (13)  | 0.61 (3)   | 0.012 (11)  | 0.22 (2)    | -0.067 (16)  |
| O2' | 0.171 (8)   | 0.194 (8)   | 0.133 (7)  | 0.024 (7)   | 0.068 (7)   | -0.056 (8)   |

# Geometric parameters (Å, °)

| Fe1—C5  | 2.024 (4) | Fe2—C22  | 2.036 (5)  |
|---------|-----------|----------|------------|
| Fe1—C9  | 2.026 (5) | Fe2—C25  | 2.038 (5)  |
| Fe1—C7  | 2.026 (5) | N2—C29   | 1.490 (6)  |
| Fe1—C6  | 2.029 (5) | N2—C28   | 1.503 (5)  |
| Fe1—C1  | 2.032 (4) | N2—C30   | 1.523 (6)  |
| Fe1—C10 | 2.034 (5) | N2—C27   | 1.527 (5)  |
| Fe1—C4  | 2.035 (4) | C17—C18  | 1.329 (9)  |
| Fe1—C8  | 2.042 (5) | C17—C20  | 1.393 (9)  |
| Fe1—C3  | 2.046 (4) | С17—Н17А | 0.9800     |
| Fe1—C2  | 2.051 (4) | C18—C19  | 1.343 (9)  |
| N1—C12  | 1.500 (5) | C18—H18A | 0.9800     |
| N1—C13  | 1.501 (6) | C19—C21  | 1.379 (10) |
| N1—C14  | 1.505 (6) | C19—H19A | 0.9800     |
|         |           |          |            |

| N1—C11                   | 1.528 (5)  | C20—C21     | 1.377 (9)            |
|--------------------------|------------|-------------|----------------------|
| C1—C2                    | 1.398 (6)  | C20—H20A    | 0.9800               |
| C1—C5                    | 1.428 (5)  | C21—H21A    | 0.9800               |
| C1—H1A                   | 0.9800     | C22—C25     | 1.388 (8)            |
| C2—C3                    | 1.394 (7)  | C22—C23     | 1.390 (7)            |
| C2—H2A                   | 0.9800     | C22—H22A    | 0.9800               |
| C3—C4                    | 1.415 (6)  | C23—C24     | 1.428 (6)            |
| С3—НЗА                   | 0.9800     | C23—H23A    | 0.9800               |
| C4—C5                    | 1.426 (6)  | C24—C26     | 1.428 (6)            |
| C4—H4A                   | 0.9800     | C24—C27     | 1.478 (5)            |
| C5—C11                   | 1.484 (5)  | C25—C26     | 1.428 (7)            |
| C6—C10                   | 1.354 (8)  | C25—H25A    | 0.9800               |
| C6—C7                    | 1.372 (8)  | C26—H26A    | 0.9800               |
| С6—Н6А                   | 0.9800     | С27—Н27А    | 0.9700               |
| С7—С8                    | 1.410 (7)  | С27—Н27В    | 0.9700               |
| С7—Н7А                   | 0.9800     | C28—H28A    | 0.9600               |
| C8—C9                    | 1.397 (8)  | C28—H28B    | 0.9600               |
| C8—H8A                   | 0.9800     | C28—H28C    | 0.9600               |
| C9—C10                   | 1.380 (8)  | С29—Н29А    | 0.9600               |
| С9—Н9А                   | 0.9800     | С29—Н29В    | 0.9600               |
| C10—H10A                 | 0.9800     | С29—Н29С    | 0.9600               |
| C11—H11A                 | 0.9700     | C30—C31     | 1.460 (7)            |
| C11—H11B                 | 0.9700     | С30—Н30А    | 0.9700               |
| C12—H12A                 | 0.9600     | С30—Н30В    | 0.9700               |
| C12—H12B                 | 0.9600     | C31—C32     | 1.312 (7)            |
| C12—H12C                 | 0.9600     | C31—H31A    | 0.9301               |
| C13—H13A                 | 0.9600     | С32—Н32А    | 0.9301               |
| C13—H13B                 | 0.9600     | С32—Н32В    | 0.9299               |
| С13—Н13С                 | 0.9600     | Cl2—07      | 1.296 (13)           |
| C14—C15                  | 1.477 (8)  | Cl2—O8      | 1.367 (12)           |
| C14—H14A                 | 0.9700     | Cl2—O5      | 1.386 (18)           |
| C14—H14B                 | 0.9700     | Cl2—O6      | 1.412 (13)           |
| C15—C16                  | 1.313 (8)  | Cl1—O3      | 1.31 (3)             |
| C15—H15A                 | 0.9299     | Cl1—Ol      | 1.426 (11)           |
| CI6—HI6A                 | 0.9300     | CII—04      | 1.44 (2)             |
| CI6—HI6B                 | 0.9300     |             | 1.523 (11)           |
| Fe2—C21                  | 2.009 (14) |             | 1.33 (2)             |
| Fe2—C20                  | 2.009 (5)  |             | 1.37 (3)             |
| Fe2—C18                  | 2.013 (6)  |             | 1.42 (3)             |
| Fe2                      | 2.013 (5)  |             | 1.4/(2)              |
| Fe2—C19                  | 2.015 (6)  |             | 1.18 (2)             |
| Fe2                      | 2.027 (4)  |             | 1.24 (5)             |
| Fe2                      | 2.029(3)   | CII         | 1.28(4)<br>1.502(15) |
| Fe2—C20                  | 2.034 (4)  |             | 1.505 (15)           |
| C5—Fel—C9                | 158.0 (3)  | C18—Fe2—C24 | 166.4 (4)            |
| C5—Fel—C/                | 121.9 (2)  | C1/-Fe2-C24 | 152.5 (3)            |
| C9—Fel—C/                | 67.0 (2)   | C19—Fe2—C24 | 128.9 (3)            |
| $C_{2}$ $F_{el}$ $C_{6}$ | 106.8 (2)  | C21—Fe2—C23 | 129.4 (3)            |
| C9—Fe1—C6                | 66.3 (2)   | C20—Fe2—C23 | 109.3 (3)            |

| C7 Eq. $C6$                     | 20.5(2)                | $C_{12} = E_{22} = C_{22}$          | 1510(4)              |
|---------------------------------|------------------------|-------------------------------------|----------------------|
| $C_{2} = Fe_{1} = C_{0}$        | 39.3 (2)<br>A1 23 (16) | $C_{10} - Fe_2 - C_{23}$            | 131.9(4)<br>110.5(3) |
| C9—Fe1—C1                       | 123 5 (2)              | $C19 - Fe^2 - C23$                  | 117.5(3)             |
| C7—Fe1—C1                       | 123.3(2)<br>158.4(2)   | $C_{1}^{2} - C_{2}^{2} - C_{2}^{2}$ | 107.0(4)             |
| C6-Fe1-C1                       | 130.7(2)               | $C_{21} = F_{e2} = C_{25}$          | 11.21(17)            |
| C5—Fe1—C10                      | 123.2(2)<br>121.8(2)   | $C_{20} = F_{e^2} = C_{20}^{26}$    | 117.7(3)             |
| C9—Fe1—C10                      | 397(2)                 | $C_{20} = C_{20} = C_{20}$          | 131.4(3)<br>1291(3)  |
| C7—Fe1—C10                      | 66 3 (2)               | $C_{10} = 102 = C_{20}$             | 125.1(3)             |
| $C_{6}$ Fe1 $C_{10}$            | 38.9(2)                | $C19 - Fe^2 - C26$                  | 103.8(3)<br>108.5(2) |
| $C_1 = E_1 = C_1 0$             | 1085(2)                | $C_{19} = C_{20} = C_{20}$          | 108.5(2)             |
| $C_{1}$ $C_{1}$ $C_{1}$ $C_{1}$ | 108.5 (2)              | $C_{24} = C_{20} = C_{20}$          | 41.17(17)            |
| $C_{3}$ $C_{4}$ $C_{4}$ $C_{4}$ | 41.14(10)<br>160.4(2)  | $C_{23} = C_{20} = C_{20}$          | 167.2(4)             |
| $C_{2}$ $F_{2}$ $C_{4}$ $C_{4}$ | 100.4(3)               | $C_{21}$ — $Fe_{2}$ — $C_{22}$      | 107.2(4)             |
| C/-Fei-C4                       | 107.3(2)               | $C_{20}$ $-re_{2}$ $-C_{22}$        | 129.0(4)             |
| $C_0 = Fe_1 = C_4$              | 122.2(2)               | C18 - Fe2 - C22                     | 119.8 (3)            |
| C1 - FeI - C4                   | 08.80 (18)             | C1/-Fe2-C22                         | 109.7(3)             |
| C10—Fe1—C4                      | 157.2 (3)              | C19—Fe2—C22                         | 151.5 (4)            |
| C5—FeI—C8                       | 158.8 (3)              | C24—Fe2—C22                         | 68.56 (19)           |
| C9—FeI—C8                       | 40.2 (2)               | C23—Fe2—C22                         | 40.0 (2)             |
| C/—FeI—C8                       | 40.6 (2)               | C26—Fe2—C22                         | 68.4 (2)             |
| C6—Fe1—C8                       | 67.2 (2)               | C21—Fe2—C25                         | 151.8 (4)            |
| CI—FeI—C8                       | 159.2 (3)              | C20—Fe2—C25                         | 166.7 (4)            |
| C10—Fe1—C8                      | 67.3 (2)               | C18—Fe2—C25                         | 110.1 (2)            |
| C4—Fe1—C8                       | 123.3 (2)              | C17—Fe2—C25                         | 128.6 (3)            |
| C5—Fe1—C3                       | 68.33 (17)             | C19—Fe2—C25                         | 119.0 (3)            |
| C9—Fe1—C3                       | 125.7 (3)              | C24—Fe2—C25                         | 68.71 (19)           |
| C7—Fe1—C3                       | 124.2 (3)              | C23—Fe2—C25                         | 67.5 (2)             |
| C6—Fe1—C3                       | 158.8 (3)              | C26—Fe2—C25                         | 41.1 (2)             |
| C1—Fe1—C3                       | 67.58 (19)             | C22—Fe2—C25                         | 39.8 (2)             |
| C10—Fe1—C3                      | 161.1 (3)              | C29—N2—C28                          | 109.6 (4)            |
| C4—Fe1—C3                       | 40.59 (18)             | C29—N2—C30                          | 107.8 (4)            |
| C8—Fe1—C3                       | 109.4 (2)              | C28—N2—C30                          | 110.0 (4)            |
| C5—Fe1—C2                       | 68.27 (17)             | C29—N2—C27                          | 110.3 (4)            |
| C9—Fe1—C2                       | 110.5 (2)              | C28—N2—C27                          | 108.0 (3)            |
| C7—Fe1—C2                       | 160.0 (3)              | C30—N2—C27                          | 111.1 (3)            |
| C6—Fe1—C2                       | 159.5 (3)              | C18—C17—C20                         | 107.6 (6)            |
| C1—Fe1—C2                       | 40.06 (17)             | C18—C17—Fe2                         | 70.7 (4)             |
| C10—Fe1—C2                      | 125.4 (2)              | C20—C17—Fe2                         | 69.6 (3)             |
| C4—Fe1—C2                       | 68.03 (19)             | C18—C17—H17A                        | 126.2                |
| C8—Fe1—C2                       | 124.4 (2)              | С20—С17—Н17А                        | 126.2                |
| C3—Fe1—C2                       | 39.77 (19)             | Fe2—C17—H17A                        | 126.2                |
| C12—N1—C13                      | 108.3 (4)              | C17—C18—C19                         | 110.3 (7)            |
| C12—N1—C14                      | 111.5 (4)              | C17-C18-Fe2                         | 70.7 (3)             |
| C13—N1—C14                      | 108.0 (4)              | C19-C18-Fe2                         | 70.6 (4)             |
| C12—N1—C11                      | 107.5 (3)              | C17-C18-H18A                        | 124.8                |
| C13—N1—C11                      | 110.2 (3)              | C19-C18-H18A                        | 124.8                |
| C14—N1—C11                      | 111.3 (3)              | Fe2—C18—H18A                        | 124.8                |
| C2—C1—C5                        | 108.0 (4)              | C18—C19—C21                         | 107.9 (7)            |
| C2                              | 70.7 (3)               | C18—C19—Fe2                         | 70.5 (4)             |
| C5-C1-Fe1                       | 69.1 (2)               | C21—C19—Fe2                         | 69.7 (4)             |

| C2—C1—H1A  | 126.0     | C18—C19—H19A | 126.1     |
|------------|-----------|--------------|-----------|
| C5—C1—H1A  | 126.0     | С21—С19—Н19А | 126.1     |
| Fe1—C1—H1A | 126.0     | Fe2—C19—H19A | 126.1     |
| C3—C2—C1   | 108.6 (4) | C21—C20—C17  | 107.1 (6) |
| C3—C2—Fe1  | 69.9 (3)  | C21—C20—Fe2  | 69.9 (3)  |
| C1—C2—Fe1  | 69.2 (2)  | C17—C20—Fe2  | 69.9 (3)  |
| C3—C2—H2A  | 125.7     | C21—C20—H20A | 126.4     |
| C1—C2—H2A  | 125.7     | C17—C20—H20A | 126.4     |
| Fe1—C2—H2A | 125.7     | Fe2—C20—H20A | 126.4     |
| C2—C3—C4   | 108.9 (4) | C20—C21—C19  | 107.1 (6) |
| C2—C3—Fe1  | 70.3 (3)  | C20-C21-Fe2  | 70.0 (7)  |
| C4—C3—Fe1  | 69.3 (2)  | C19—C21—Fe2  | 70.2 (7)  |
| С2—С3—НЗА  | 125.5     | C20—C21—H21A | 126.4     |
| С4—С3—НЗА  | 125.5     | C19—C21—H21A | 126.4     |
| Fe1—C3—H3A | 125.5     | Fe2—C21—H21A | 126.4     |
| C3—C4—C5   | 107.1 (4) | C25—C22—C23  | 108.8 (5) |
| C3—C4—Fe1  | 70.1 (3)  | C25—C22—Fe2  | 70.1 (3)  |
| C5—C4—Fe1  | 69.0 (2)  | C23—C22—Fe2  | 69.7 (3)  |
| C3—C4—H4A  | 126.5     | C25—C22—H22A | 125.6     |
| C5—C4—H4A  | 126.5     | С23—С22—Н22А | 125.6     |
| Fe1—C4—H4A | 126.5     | Fe2—C22—H22A | 125.6     |
| C4—C5—C1   | 107.3 (4) | C22—C23—C24  | 108.6 (5) |
| C4—C5—C11  | 125.3 (4) | C22—C23—Fe2  | 70.3 (3)  |
| C1—C5—C11  | 127.1 (4) | C24—C23—Fe2  | 69.3 (2)  |
| C4—C5—Fe1  | 69.8 (2)  | С22—С23—Н23А | 125.7     |
| C1—C5—Fe1  | 69.7 (2)  | С24—С23—Н23А | 125.7     |
| C11—C5—Fe1 | 121.7 (2) | Fe2—C23—H23A | 125.7     |
| C10—C6—C7  | 109.2 (6) | C23—C24—C26  | 106.9 (4) |
| C10—C6—Fe1 | 70.7 (3)  | C23—C24—C27  | 126.8 (4) |
| C7—C6—Fe1  | 70.1 (3)  | C26—C24—C27  | 126.0 (4) |
| С10—С6—Н6А | 125.4     | C23—C24—Fe2  | 69.5 (2)  |
| С7—С6—Н6А  | 125.4     | C26—C24—Fe2  | 69.7 (2)  |
| Fe1—C6—H6A | 125.4     | C27—C24—Fe2  | 121.6 (3) |
| C6—C7—C8   | 108.2 (5) | C22—C25—C26  | 108.7 (5) |
| C6—C7—Fe1  | 70.3 (3)  | C22—C25—Fe2  | 70.0 (3)  |
| C8—C7—Fe1  | 70.3 (3)  | C26—C25—Fe2  | 69.3 (3)  |
| С6—С7—Н7А  | 125.9     | С22—С25—Н25А | 125.6     |
| С8—С7—Н7А  | 125.9     | C26—C25—H25A | 125.6     |
| Fe1—C7—H7A | 125.9     | Fe2—C25—H25A | 125.6     |
| C9—C8—C7   | 105.6 (5) | C25—C26—C24  | 106.9 (5) |
| C9—C8—Fe1  | 69.3 (3)  | C25—C26—Fe2  | 69.6 (3)  |
| C7—C8—Fe1  | 69.1 (3)  | C24—C26—Fe2  | 69.2 (2)  |
| С9—С8—Н8А  | 127.2     | C25—C26—H26A | 126.5     |
| C7—C8—H8A  | 127.2     | C24—C26—H26A | 126.5     |
| Fe1—C8—H8A | 127.2     | Fe2—C26—H26A | 126.5     |
| C10—C9—C8  | 108.7 (5) | C24—C27—N2   | 115.1 (3) |
| C10—C9—Fe1 | 70.4 (3)  | C24—C27—H27A | 108.5     |
| C8—C9—Fe1  | 70.5 (3)  | N2—C27—H27A  | 108.5     |
| С10—С9—Н9А | 125.6     | С24—С27—Н27В | 108.5     |

| С8—С9—Н9А                                                                                                                                                                                                                           | 125.6                                                                                                                                                                                      | N2—C27—H27B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.5                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fe1—C9—H9A                                                                                                                                                                                                                          | 125.6                                                                                                                                                                                      | H27A—C27—H27B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.5                                                                                                                                                                                              |
| C6—C10—C9                                                                                                                                                                                                                           | 108.3 (6)                                                                                                                                                                                  | N2—C28—H28A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                              |
| C6—C10—Fe1                                                                                                                                                                                                                          | 70.3 (3)                                                                                                                                                                                   | N2—C28—H28B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                              |
| C9—C10—Fe1                                                                                                                                                                                                                          | 69.8 (3)                                                                                                                                                                                   | H28A—C28—H28B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                              |
| C6-C10-H10A                                                                                                                                                                                                                         | 125.8                                                                                                                                                                                      | N2—C28—H28C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                              |
| С9—С10—Н10А                                                                                                                                                                                                                         | 125.8                                                                                                                                                                                      | H28A—C28—H28C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                              |
| Fe1—C10—H10A                                                                                                                                                                                                                        | 125.8                                                                                                                                                                                      | H28B—C28—H28C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                              |
| C5-C11-N1                                                                                                                                                                                                                           | 114.8 (3)                                                                                                                                                                                  | N2—C29—H29A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                              |
| С5—С11—Н11А                                                                                                                                                                                                                         | 108.6                                                                                                                                                                                      | N2—C29—H29B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                              |
| N1—C11—H11A                                                                                                                                                                                                                         | 108.6                                                                                                                                                                                      | H29A—C29—H29B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                              |
| C5-C11-H11B                                                                                                                                                                                                                         | 108.6                                                                                                                                                                                      | N2—C29—H29C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                              |
| N1—C11—H11B                                                                                                                                                                                                                         | 108.6                                                                                                                                                                                      | H29A—C29—H29C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                              |
| H11A—C11—H11B                                                                                                                                                                                                                       | 107.6                                                                                                                                                                                      | H29B—C29—H29C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                              |
| N1—C12—H12A                                                                                                                                                                                                                         | 109.5                                                                                                                                                                                      | C31—C30—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.9 (4)                                                                                                                                                                                          |
| N1—C12—H12B                                                                                                                                                                                                                         | 109.5                                                                                                                                                                                      | C31—C30—H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.5                                                                                                                                                                                              |
| H12A—C12—H12B                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                      | N2-C30-H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.5                                                                                                                                                                                              |
| N1—C12—H12C                                                                                                                                                                                                                         | 109.5                                                                                                                                                                                      | С31—С30—Н30В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.5                                                                                                                                                                                              |
| H12A—C12—H12C                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                      | N2—C30—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.5                                                                                                                                                                                              |
| H12B—C12—H12C                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                      | H30A—C30—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.5                                                                                                                                                                                              |
| N1—C13—H13A                                                                                                                                                                                                                         | 109.5                                                                                                                                                                                      | C32—C31—C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.8 (6)                                                                                                                                                                                          |
| N1—C13—H13B                                                                                                                                                                                                                         | 109.5                                                                                                                                                                                      | С32—С31—Н31А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.7                                                                                                                                                                                              |
| H13A—C13—H13B                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                      | C30—C31—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.5                                                                                                                                                                                              |
| N1—C13—H13C                                                                                                                                                                                                                         | 109.5                                                                                                                                                                                      | С31—С32—Н32А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.2                                                                                                                                                                                              |
| H13A—C13—H13C                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                      | C31—C32—H32B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.8                                                                                                                                                                                              |
| H13B—C13—H13C                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                      | H32A—C32—H32B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0                                                                                                                                                                                              |
| C15-C14-N1                                                                                                                                                                                                                          | 114.1 (4)                                                                                                                                                                                  | O7—Cl2—O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.6 (11)                                                                                                                                                                                         |
| C15-C14-H14A                                                                                                                                                                                                                        | 108.7                                                                                                                                                                                      | O7—Cl2—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.6 (13)                                                                                                                                                                                         |
| N1-C14-H14A                                                                                                                                                                                                                         | 108.7                                                                                                                                                                                      | O8—Cl2—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101.6 (11)                                                                                                                                                                                         |
| C15-C14-H14B                                                                                                                                                                                                                        | 108.7                                                                                                                                                                                      | O7—Cl2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.1 (9)                                                                                                                                                                                          |
| N1-C14-H14B                                                                                                                                                                                                                         | 108.7                                                                                                                                                                                      | O8—Cl2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.2 (9)                                                                                                                                                                                          |
| H14A—C14—H14B                                                                                                                                                                                                                       | 107.6                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.9(10)                                                                                                                                                                                          |
| C16—C15—C14                                                                                                                                                                                                                         | 107.0                                                                                                                                                                                      | O5—Cl2—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.8 (10)                                                                                                                                                                                         |
|                                                                                                                                                                                                                                     | 124.7 (7)                                                                                                                                                                                  | 05Cl2O6<br>03Cl1O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102.8 (10)<br>141 (2)                                                                                                                                                                              |
| С16—С15—Н15А                                                                                                                                                                                                                        | 124.7 (7)<br>117.9                                                                                                                                                                         | 05Cl2O6<br>O3Cl1O1<br>O3Cl1O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.8 (10)<br>141 (2)<br>105.6 (16)                                                                                                                                                                |
| C16—C15—H15A<br>C14—C15—H15A                                                                                                                                                                                                        | 124.7 (7)<br>117.9<br>117.4                                                                                                                                                                | 05Cl2O6<br>03Cl1O1<br>03Cl1O4<br>01Cl1O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)                                                                                                                                                  |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A                                                                                                                                                                                        | 124.7 (7)<br>117.9<br>117.4<br>120.6                                                                                                                                                       | 05-Cl2-O6<br>O3-Cl1-O1<br>O3-Cl1-O4<br>O1-Cl1-O4<br>O3-Cl1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)                                                                                                                                     |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B                                                                                                                                                                        | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4                                                                                                                                              | 05-Cl2-O6<br>03-Cl1-O1<br>03-Cl1-O4<br>01-Cl1-O4<br>03-Cl1-O2<br>01-Cl1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)                                                                                                                         |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B                                                                                                                                                       | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0                                                                                                                                     | 05-Cl2-O6<br>03-Cl1-O1<br>03-Cl1-O4<br>01-Cl1-O4<br>03-Cl1-O2<br>01-Cl1-O2<br>04-Cl1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)                                                                                                           |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20                                                                                                                                        | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)                                                                                                                         | 05-Cl2-O6<br>03-Cl1-O1<br>03-Cl1-O4<br>01-Cl1-O4<br>03-Cl1-O2<br>01-Cl1-O2<br>04-Cl1-O2<br>06'-Cl2'-O5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)                                                                                                |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18                                                                                                                         | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)                                                                                                             | 05-Cl2-O6<br>03-Cl1-O1<br>03-Cl1-O4<br>01-Cl1-O4<br>03-Cl1-O2<br>01-Cl1-O2<br>04-Cl1-O2<br>06'-Cl2'-O5'<br>06'-Cl2'-O7'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)                                                                                     |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18                                                                                                          | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)                                                                                                 | 05-Cl2-O6<br>03-Cl1-O1<br>03-Cl1-O4<br>01-Cl1-O4<br>03-Cl1-O2<br>01-Cl1-O2<br>04-Cl1-O2<br>06'-Cl2'-O5'<br>06'-Cl2'-O7'<br>05'-Cl2'-O7'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)                                                                          |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C21—Fe2—C17                                                                                           | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>67.3 (3)                                                                                     | 05-Cl2-O6<br>03-Cl1-O1<br>03-Cl1-O4<br>01-Cl1-O4<br>03-Cl1-O2<br>01-Cl1-O2<br>04-Cl1-O2<br>06'-Cl2'-O5'<br>06'-Cl2'-O7'<br>05'-Cl2'-O7'<br>06'-Cl2'-O8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)<br>96.7 (17)                                                             |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C21—Fe2—C17<br>C20—Fe2—C17                                                                            | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>67.3 (3)<br>40.5 (3)                                                                         | $\begin{array}{c} 05 - Cl2 - O6 \\ 03 - Cl1 - O1 \\ 03 - Cl1 - O4 \\ 01 - Cl1 - O4 \\ 03 - Cl1 - O2 \\ 01 - Cl1 - O2 \\ 04 - Cl1 - O2 \\ 06' - Cl2' - O5' \\ 06' - Cl2' - O7' \\ 05' - Cl2' - O7' \\ 06' - Cl2' - O8' \\ 05' - Cl2' - O8' \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)<br>96.7 (17)<br>108.5 (19)                                               |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C20—Fe2—C17<br>C20—Fe2—C17<br>C18—Fe2—C17                                                             | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>67.3 (3)<br>40.5 (3)<br>38.6 (3)                                                             | $\begin{array}{c} 05 - Cl2 - 06 \\ 03 - Cl1 - 01 \\ 03 - Cl1 - 04 \\ 01 - Cl1 - 04 \\ 03 - Cl1 - 02 \\ 01 - Cl1 - 02 \\ 04 - Cl1 - 02 \\ 06' - Cl2' - 05' \\ 06' - Cl2' - 07' \\ 05' - Cl2' - 07' \\ 05' - Cl2' - 08' \\ 05' - Cl2' - 08' \\ 07' - Cl2' - 08' \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)<br>96.7 (17)<br>108.5 (19)<br>96 (2)                                     |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C21—Fe2—C17<br>C20—Fe2—C17<br>C18—Fe2—C17<br>C21—Fe2—C19                                              | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>67.3 (3)<br>40.5 (3)<br>38.6 (3)<br>40.1 (3)                                                 | $\begin{array}{c} 05 \\ \hline 03 \\ \hline 01 \\ \hline 04 \\ \hline 03 \\ \hline 01 \\ \hline 04 \\ \hline 01 \\ \hline 02 \\ \hline 04 \\ \hline 01 \\ \hline 02 \\ \hline 04 \\ \hline 01 \\ \hline 02 \\ \hline 06' \\ \hline 012' \\ \hline 05' \\ \hline 05' \\ \hline 012' \\ \hline 07' \\ \hline 08' \\ \hline 07' \\ \hline 012' \\ \hline 08' \\ \hline 07' \\ \hline 012' \\ \hline 08' \\ \hline 07' \\ \hline 012' \\ \hline 08' \\ \hline 07' \\ \hline 012' \\ \hline 08' \\ \hline 07' \\ \hline 012' \\ \hline 08' \\ \hline 07' \\ \hline 012' \\ \hline 08' \\ \hline 011' \\ \hline 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01' \\ 01'$ | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)<br>96.7 (17)<br>108.5 (19)<br>96 (2)<br>114.1 (17)                       |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C20—Fe2—C17<br>C18—Fe2—C17<br>C18—Fe2—C17<br>C21—Fe2—C19<br>C20—Fe2—C19                               | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>67.3 (3)<br>40.5 (3)<br>38.6 (3)<br>40.1 (3)<br>66.9 (3)                                     | $\begin{array}{c} 05 - Cl2 - 06 \\ 03 - Cl1 - 01 \\ 03 - Cl1 - 04 \\ 01 - Cl1 - 04 \\ 03 - Cl1 - 02 \\ 01 - Cl1 - 02 \\ 04 - Cl1 - 02 \\ 06' - Cl2' - 05' \\ 06' - Cl2' - 07' \\ 05' - Cl2' - 07' \\ 05' - Cl2' - 08' \\ 05' - Cl2' - 08' \\ 05' - Cl2' - 08' \\ 07' - Cl2' - 08' \\ 02' - Cl1' - 01' \\ 02' - Cl1' - 04' \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)<br>96.7 (17)<br>108.5 (19)<br>96 (2)<br>114.1 (17)<br>110 (2)            |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C20—Fe2—C17<br>C20—Fe2—C17<br>C18—Fe2—C17<br>C21—Fe2—C17<br>C21—Fe2—C19<br>C20—Fe2—C19<br>C18—Fe2—C19 | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>67.3 (3)<br>40.5 (3)<br>38.6 (3)<br>40.1 (3)<br>66.9 (3)<br>38.9 (3)                         | $\begin{array}{c} 05 - Cl2 - 06 \\ 03 - Cl1 - 01 \\ 03 - Cl1 - 04 \\ 01 - Cl1 - 04 \\ 03 - Cl1 - 02 \\ 01 - Cl1 - 02 \\ 04 - Cl1 - 02 \\ 06' - Cl2' - 05' \\ 06' - Cl2' - 05' \\ 06' - Cl2' - 07' \\ 05' - Cl2' - 07' \\ 05' - Cl2' - 08' \\ 05' - Cl2' - 08' \\ 05' - Cl2' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' - 08' \\ 07' -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.8 (10)<br>141 (2)<br>105.6 (16)<br>108.4 (11)<br>90.6 (14)<br>93.1 (7)<br>111.9 (13)<br>132 (2)<br>111 (2)<br>107 (2)<br>96.7 (17)<br>108.5 (19)<br>96 (2)<br>114.1 (17)<br>110 (2)<br>107 (3) |
| C16—C15—H15A<br>C14—C15—H15A<br>C15—C16—H16A<br>C15—C16—H16B<br>H16A—C16—H16B<br>C21—Fe2—C20<br>C21—Fe2—C18<br>C20—Fe2—C18<br>C20—Fe2—C17<br>C20—Fe2—C17<br>C18—Fe2—C17<br>C21—Fe2—C19<br>C20—Fe2—C19<br>C18—Fe2—C19<br>C17—Fe2—C19 | 124.7 (7)<br>117.9<br>117.4<br>120.6<br>119.4<br>120.0<br>40.1 (3)<br>66.3 (3)<br>66.2 (3)<br>66.2 (3)<br>67.3 (3)<br>40.5 (3)<br>38.6 (3)<br>40.1 (3)<br>66.9 (3)<br>38.9 (3)<br>66.0 (3) | 05-Cl2-O6 $03-Cl1-O1$ $03-Cl1-O4$ $01-Cl1-O4$ $03-Cl1-O2$ $01-Cl1-O2$ $04-Cl1-O2$ $06'-Cl2'-O5'$ $06'-Cl2'-O7'$ $05'-Cl2'-O7'$ $06'-Cl2'-O8'$ $05'-Cl2'-O8'$ $07'-Cl2'-O8'$ $07'-Cl2'-C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102.8 (10) $141 (2)$ $105.6 (16)$ $108.4 (11)$ $90.6 (14)$ $93.1 (7)$ $111.9 (13)$ $132 (2)$ $111 (2)$ $107 (2)$ $96.7 (17)$ $108.5 (19)$ $96 (2)$ $114.1 (17)$ $110 (2)$ $107 (3)$ $129.6 (12)$   |

| C20—Fe2—C24   | 118.1 (3)  | O4'—Cl1'—O3'    | 107 (2)    |
|---------------|------------|-----------------|------------|
| C5—Fe1—C1—C2  | 119.0 (4)  | C21—Fe2—C17—C18 | -80.0 (5)  |
| C9—Fe1—C1—C2  | -82.2 (4)  | C20—Fe2—C17—C18 | -118.1 (6) |
| C7—Fe1—C1—C2  | 164.3 (5)  | C19—Fe2—C17—C18 | -36.2 (4)  |
| C6—Fe1—C1—C2  | -163.9 (3) | C24—Fe2—C17—C18 | -165.4 (5) |
| C10—Fe1—C1—C2 | -123.6 (4) | C23—Fe2—C17—C18 | 156.3 (5)  |
| C4—Fe1—C1—C2  | 80.6 (3)   | C26—Fe2—C17—C18 | 33.7 (12)  |
| C8—Fe1—C1—C2  | -49.1 (7)  | C22—Fe2—C17—C18 | 113.4 (5)  |
| C3—Fe1—C1—C2  | 36.7 (3)   | C25—Fe2—C17—C18 | 72.7 (6)   |
| C9—Fe1—C1—C5  | 158.8 (3)  | C21—Fe2—C17—C20 | 38.1 (4)   |
| C7—Fe1—C1—C5  | 45.3 (6)   | C18—Fe2—C17—C20 | 118.1 (6)  |
| C6—Fe1—C1—C5  | 77.1 (3)   | C19—Fe2—C17—C20 | 81.9 (5)   |
| C10—Fe1—C1—C5 | 117.5 (3)  | C24—Fe2—C17—C20 | -47.3 (7)  |
| C4—Fe1—C1—C5  | -38.4 (2)  | C23—Fe2—C17—C20 | -85.6 (5)  |
| C8—Fe1—C1—C5  | -168.1 (5) | C26—Fe2—C17—C20 | 151.8 (9)  |
| C3—Fe1—C1—C5  | -82.2 (3)  | C22—Fe2—C17—C20 | -128.5 (5) |
| C2—Fe1—C1—C5  | -119.0 (4) | C25—Fe2—C17—C20 | -169.2 (5) |
| C5—C1—C2—C3   | 0.3 (5)    | C20-C17-C18-C19 | -0.5 (7)   |
| Fe1—C1—C2—C3  | -59.0 (3)  | Fe2-C17-C18-C19 | 59.7 (5)   |
| C5-C1-C2-Fe1  | 59.2 (3)   | C20-C17-C18-Fe2 | -60.1 (4)  |
| C5—Fe1—C2—C3  | 81.8 (3)   | C21—Fe2—C18—C17 | 82.8 (5)   |
| C9—Fe1—C2—C3  | -121.7 (4) | C20—Fe2—C18—C17 | 38.8 (4)   |
| C7—Fe1—C2—C3  | -42.9 (7)  | C19—Fe2—C18—C17 | 120.9 (7)  |
| C6—Fe1—C2—C3  | 161.5 (6)  | C24—Fe2—C18—C17 | 150.2 (8)  |
| C1—Fe1—C2—C3  | 120.2 (4)  | C23—Fe2—C18—C17 | -47.9 (7)  |
| C10—Fe1—C2—C3 | -163.9 (4) | C26—Fe2—C18—C17 | -169.9 (4) |
| C4—Fe1—C2—C3  | 37.3 (3)   | C22—Fe2—C18—C17 | -84.6 (5)  |
| C8—Fe1—C2—C3  | -78.9 (4)  | C25—Fe2—C18—C17 | -127.4 (5) |
| C5—Fe1—C2—C1  | -38.4 (3)  | C21—Fe2—C18—C19 | -38.1 (5)  |
| C9—Fe1—C2—C1  | 118.1 (4)  | C20—Fe2—C18—C19 | -82.1 (5)  |
| C7—Fe1—C2—C1  | -163.0 (5) | C17—Fe2—C18—C19 | -120.9 (7) |
| C6—Fe1—C2—C1  | 41.3 (7)   | C24—Fe2—C18—C19 | 29.3 (12)  |
| C10—Fe1—C2—C1 | 76.0 (4)   | C23—Fe2—C18—C19 | -168.8 (5) |
| C4—Fe1—C2—C1  | -82.9 (3)  | C26—Fe2—C18—C19 | 69.2 (6)   |
| C8—Fe1—C2—C1  | 161.0 (3)  | C22—Fe2—C18—C19 | 154.5 (5)  |
| C3—Fe1—C2—C1  | -120.2 (4) | C25—Fe2—C18—C19 | 111.7 (6)  |
| C1—C2—C3—C4   | -0.1 (5)   | C17-C18-C19-C21 | 0.2 (7)    |
| Fe1—C2—C3—C4  | -58.7 (3)  | Fe2-C18-C19-C21 | 59.9 (4)   |
| C1-C2-C3-Fe1  | 58.5 (3)   | C17-C18-C19-Fe2 | -59.7 (4)  |
| C5—Fe1—C3—C2  | -81.6 (3)  | C21—Fe2—C19—C18 | 118.6 (6)  |
| C9—Fe1—C3—C2  | 79.0 (4)   | C20—Fe2—C19—C18 | 80.2 (5)   |
| C7—Fe1—C3—C2  | 163.7 (3)  | C17—Fe2—C19—C18 | 35.8 (4)   |
| C6—Fe1—C3—C2  | -162.1 (6) | C24—Fe2—C19—C18 | -171.5 (4) |
| C1—Fe1—C3—C2  | -37.0 (3)  | C23—Fe2—C19—C18 | 154.8 (10) |
| C10—Fe1—C3—C2 | 44.5 (8)   | C26—Fe2—C19—C18 | -130.1 (5) |
| C4—Fe1—C3—C2  | -120.2 (4) | C22—Fe2—C19—C18 | -51.5 (8)  |
| C8—Fe1—C3—C2  | 120.9 (3)  | C25—Fe2—C19—C18 | -86.5 (5)  |
| C5—Fe1—C3—C4  | 38.6 (3)   | C20—Fe2—C19—C21 | -38.4 (4)  |
| C9—Fe1—C3—C4  | -160.8 (3) | C18—Fe2—C19—C21 | -118.6 (6) |

| C7—Fe1—C3—C4  | -76.1 (4)  | C17—Fe2—C19—C21 | -82.7 (5)  |
|---------------|------------|-----------------|------------|
| C6—Fe1—C3—C4  | -41.9 (7)  | C24—Fe2—C19—C21 | 69.9 (5)   |
| C1—Fe1—C3—C4  | 83.2 (3)   | C23—Fe2—C19—C21 | 36.2 (14)  |
| C10—Fe1—C3—C4 | 164.7 (6)  | C26—Fe2—C19—C21 | 111.3 (5)  |
| C8—Fe1—C3—C4  | -118.9 (4) | C22—Fe2—C19—C21 | -170.0 (6) |
| C2—Fe1—C3—C4  | 120.2 (4)  | C25—Fe2—C19—C21 | 155.0 (5)  |
| C2—C3—C4—C5   | -0.1 (5)   | C18—C17—C20—C21 | 0.6 (7)    |
| Fe1—C3—C4—C5  | -59.4 (3)  | Fe2-C17-C20-C21 | -60.3 (4)  |
| C2—C3—C4—Fe1  | 59.3 (3)   | C18—C17—C20—Fe2 | 60.8 (4)   |
| C5—Fe1—C4—C3  | -118.2 (4) | C18—Fe2—C20—C21 | 81.0 (5)   |
| C9—Fe1—C4—C3  | 52.9 (7)   | C17—Fe2—C20—C21 | 117.9 (6)  |
| C7—Fe1—C4—C3  | 122.7 (4)  | C19—Fe2—C20—C21 | 38.3 (4)   |
| C6—Fe1—C4—C3  | 163.4 (4)  | C24—Fe2—C20—C21 | -84.7 (5)  |
| C1—Fe1—C4—C3  | -79.8 (3)  | C23—Fe2—C20—C21 | -129.0 (5) |
| C10—Fe1—C4—C3 | -167.3 (5) | C26—Fe2—C20—C21 | -48.1 (7)  |
| C8—Fe1—C4—C3  | 81.1 (4)   | C22—Fe2—C20—C21 | -169.2 (4) |
| C2—Fe1—C4—C3  | -36.6 (3)  | C25—Fe2—C20—C21 | 157.3 (11) |
| C9—Fe1—C4—C5  | 171.1 (5)  | C21—Fe2—C20—C17 | -117.9 (6) |
| C7—Fe1—C4—C5  | -119.0 (3) | C18—Fe2—C20—C17 | -36.9 (4)  |
| C6—Fe1—C4—C5  | -78.3 (4)  | C19—Fe2—C20—C17 | -79.5 (5)  |
| C1—Fe1—C4—C5  | 38.5 (2)   | C24—Fe2—C20—C17 | 157.4 (4)  |
| C10—Fe1—C4—C5 | -49.1 (6)  | C23—Fe2—C20—C17 | 113.1 (5)  |
| C8—Fe1—C4—C5  | -160.7 (3) | C26—Fe2—C20—C17 | -166.0 (5) |
| C3—Fe1—C4—C5  | 118.2 (4)  | C22—Fe2—C20—C17 | 72.9 (5)   |
| C2—Fe1—C4—C5  | 81.7 (3)   | C25—Fe2—C20—C17 | 39.4 (13)  |
| C3—C4—C5—C1   | 0.2 (4)    | C17—C20—C21—C19 | -0.4 (7)   |
| Fe1—C4—C5—C1  | -59.9 (3)  | Fe2—C20—C21—C19 | -60.7 (4)  |
| C3—C4—C5—C11  | 175.3 (4)  | C17—C20—C21—Fe2 | 60.3 (4)   |
| Fe1—C4—C5—C11 | 115.2 (4)  | C18-C19-C21-C20 | 0.2 (7)    |
| C3—C4—C5—Fe1  | 60.1 (3)   | Fe2-C19-C21-C20 | 60.6 (4)   |
| C2—C1—C5—C4   | -0.3 (4)   | C18-C19-C21-Fe2 | -60.4 (4)  |
| Fe1—C1—C5—C4  | 59.9 (3)   | C18—Fe2—C21—C20 | -80.6 (5)  |
| C2-C1-C5-C11  | -175.2 (4) | C17—Fe2—C21—C20 | -38.5 (4)  |
| Fe1—C1—C5—C11 | -115.0 (4) | C19—Fe2—C21—C20 | -117.6 (6) |
| C2-C1-C5-Fe1  | -60.3 (3)  | C24—Fe2—C21—C20 | 112.6 (5)  |
| C9—Fe1—C5—C4  | -172.0 (5) | C23—Fe2—C21—C20 | 71.8 (5)   |
| C7—Fe1—C5—C4  | 79.6 (3)   | C26—Fe2—C21—C20 | 156.2 (4)  |
| C6—Fe1—C5—C4  | 120.1 (3)  | C22—Fe2—C21—C20 | 40.5 (12)  |
| C1—Fe1—C5—C4  | -118.3 (3) | C25—Fe2—C21—C20 | -169.2 (5) |
| C10—Fe1—C5—C4 | 159.8 (3)  | C20—Fe2—C21—C19 | 117.6 (6)  |
| C8—Fe1—C5—C4  | 50.0 (6)   | C18—Fe2—C21—C19 | 37.1 (4)   |
| C3—Fe1—C5—C4  | -38.1 (3)  | C17—Fe2—C21—C19 | 79.1 (5)   |
| C2—Fe1—C5—C4  | -81.0 (3)  | C24—Fe2—C21—C19 | -129.8 (5) |
| C9—Fe1—C5—C1  | -53.7 (6)  | C23—Fe2—C21—C19 | -170.5 (4) |
| C7—Fe1—C5—C1  | -162.0 (3) | C26—Fe2—C21—C19 | -86.1 (5)  |
| C6—Fe1—C5—C1  | -121.6 (3) | C22—Fe2—C21—C19 | 158.2 (10) |
| C10—Fe1—C5—C1 | -81.9 (3)  | C25—Fe2—C21—C19 | -51.5 (7)  |
| C4—Fe1—C5—C1  | 118.3 (3)  | C21—Fe2—C22—C25 | 158.6 (10) |
| C8—Fe1—C5—C1  | 168.3 (5)  | C20—Fe2—C22—C25 | -168.5 (4) |

| C3—Fe1—C5—C1   | 80.3 (3)   | C18—Fe2—C22—C25 | -86.1 (5)  |
|----------------|------------|-----------------|------------|
| C2—Fe1—C5—C1   | 37.3 (3)   | C17—Fe2—C22—C25 | -127.3 (5) |
| C9—Fe1—C5—C11  | 68.1 (6)   | C19—Fe2—C22—C25 | -51.6(7)   |
| C7—Fe1—C5—C11  | -40.2 (5)  | C24—Fe2—C22—C25 | 82.1 (4)   |
| C6—Fe1—C5—C11  | 0.2 (4)    | C23—Fe2—C22—C25 | 119.9 (5)  |
| C1—Fe1—C5—C11  | 121.8 (5)  | C26—Fe2—C22—C25 | 37.7 (3)   |
| C10—Fe1—C5—C11 | 40.0 (5)   | C21—Fe2—C22—C23 | 38.6 (13)  |
| C4—Fe1—C5—C11  | -119.8 (5) | C20—Fe2—C22—C23 | 71.5 (5)   |
| C8—Fe1—C5—C11  | -69.9 (7)  | C18—Fe2—C22—C23 | 154.0 (4)  |
| C3—Fe1—C5—C11  | -157.9 (4) | C17—Fe2—C22—C23 | 112.8 (5)  |
| C2—Fe1—C5—C11  | 159.1 (4)  | C19—Fe2—C22—C23 | -171.5 (5) |
| C5—Fe1—C6—C10  | 120.1 (4)  | C24—Fe2—C22—C23 | -37.9 (3)  |
| C9—Fe1—C6—C10  | -37.6 (4)  | C26—Fe2—C22—C23 | -82.3 (4)  |
| C7—Fe1—C6—C10  | -119.7 (5) | C25—Fe2—C22—C23 | -119.9 (5) |
| C1—Fe1—C6—C10  | 78.0 (4)   | C25—C22—C23—C24 | -0.6 (6)   |
| C4—Fe1—C6—C10  | 162.4 (4)  | Fe2—C22—C23—C24 | 58.9 (3)   |
| C8—Fe1—C6—C10  | -81.5 (4)  | C25—C22—C23—Fe2 | -59.4 (4)  |
| C3—Fe1—C6—C10  | -166.7 (5) | C21—Fe2—C23—C22 | -169.6 (5) |
| C2—Fe1—C6—C10  | 47.5 (8)   | C20—Fe2—C23—C22 | -129.2 (5) |
| C5—Fe1—C6—C7   | -120.1 (4) | C18—Fe2—C23—C22 | -53.8 (7)  |
| C9—Fe1—C6—C7   | 82.1 (4)   | C17—Fe2—C23—C22 | -85.9 (5)  |
| C1—Fe1—C6—C7   | -162.3 (3) | C19—Fe2—C23—C22 | 160.8 (11) |
| C10—Fe1—C6—C7  | 119.7 (5)  | C24—Fe2—C23—C22 | 119.9 (5)  |
| C4—Fe1—C6—C7   | -77.8 (4)  | C26—Fe2—C23—C22 | 81.3 (4)   |
| C8—Fe1—C6—C7   | 38.2 (3)   | C25—Fe2—C23—C22 | 36.9 (4)   |
| C3—Fe1—C6—C7   | -47.0 (7)  | C21—Fe2—C23—C24 | 70.5 (5)   |
| C2—Fe1—C6—C7   | 167.2 (5)  | C20—Fe2—C23—C24 | 110.9 (4)  |
| C10—C6—C7—C8   | -0.2 (6)   | C18—Fe2—C23—C24 | -173.6 (5) |
| Fe1—C6—C7—C8   | -60.4 (4)  | C17—Fe2—C23—C24 | 154.3 (4)  |
| C10-C6-C7-Fe1  | 60.2 (4)   | C19—Fe2—C23—C24 | 41.0 (13)  |
| C5—Fe1—C7—C6   | 77.3 (4)   | C26—Fe2—C23—C24 | -38.6 (3)  |
| C9—Fe1—C7—C6   | -80.0 (4)  | C22—Fe2—C23—C24 | -119.9 (5) |
| C1—Fe1—C7—C6   | 43.8 (7)   | C25—Fe2—C23—C24 | -82.9 (3)  |
| C10—Fe1—C7—C6  | -36.6 (4)  | C22—C23—C24—C26 | 0.4 (5)    |
| C4—Fe1—C7—C6   | 120.0 (4)  | Fe2—C23—C24—C26 | 59.9 (3)   |
| C8—Fe1—C7—C6   | -118.7 (5) | C22—C23—C24—C27 | -174.2 (4) |
| C3—Fe1—C7—C6   | 161.4 (4)  | Fe2—C23—C24—C27 | -114.8 (4) |
| C2—Fe1—C7—C6   | -166.9 (5) | C22—C23—C24—Fe2 | -59.5 (4)  |
| C5—Fe1—C7—C8   | -164.0 (3) | C21—Fe2—C24—C23 | -130.1 (5) |
| C9—Fe1—C7—C8   | 38.7 (4)   | C20—Fe2—C24—C23 | -87.7 (4)  |
| C6—Fe1—C7—C8   | 118.7 (5)  | C18—Fe2—C24—C23 | 167.1 (9)  |
| C1—Fe1—C7—C8   | 162.5 (5)  | C17—Fe2—C24—C23 | -54.9 (6)  |
| C10—Fe1—C7—C8  | 82.1 (4)   | C19—Fe2—C24—C23 | -169.6 (4) |
| C4—Fe1—C7—C8   | -121.3 (4) | C26—Fe2—C24—C23 | 118.1 (4)  |
| C3—Fe1—C7—C8   | -79.9 (4)  | C22—Fe2—C24—C23 | 36.8 (3)   |
| C2—Fe1—C7—C8   | -48.2 (7)  | C25—Fe2—C24—C23 | 79.7 (4)   |
| C6—C7—C8—C9    | 0.4 (6)    | C21—Fe2—C24—C26 | 111.9 (5)  |
| Fe1—C7—C8—C9   | -60.0 (3)  | C20—Fe2—C24—C26 | 154.2 (4)  |
| C6—C7—C8—Fe1   | 60.4 (4)   | C18—Fe2—C24—C26 | 49.1 (10)  |

| C5—Fe1—C8—C9  | 157.2 (5)  | C17—Fe2—C24—C26 | -173.0(5)  |
|---------------|------------|-----------------|------------|
| C7—Fe1—C8—C9  | 116.9 (5)  | C19—Fe2—C24—C26 | 72.4 (5)   |
| C6—Fe1—C8—C9  | 79.6 (4)   | C23—Fe2—C24—C26 | -118.1 (4) |
| C1—Fe1—C8—C9  | -44.9 (7)  | C22—Fe2—C24—C26 | -81.3 (3)  |
| C10—Fe1—C8—C9 | 37.3 (3)   | C25—Fe2—C24—C26 | -38.4(3)   |
| C4—Fe1—C8—C9  | -165.8 (4) | C21—Fe2—C24—C27 | -8.7 (5)   |
| C3—Fe1—C8—C9  | -122.8 (4) | C20—Fe2—C24—C27 | 33.7 (5)   |
| C2—Fe1—C8—C9  | -81.1 (4)  | C18—Fe2—C24—C27 | -71.5 (10) |
| C5—Fe1—C8—C7  | 40.2 (7)   | C17—Fe2—C24—C27 | 66.4 (6)   |
| C9—Fe1—C8—C7  | -116.9 (5) | C19—Fe2—C24—C27 | -48.2 (5)  |
| C6—Fe1—C8—C7  | -37.3 (3)  | C23—Fe2—C24—C27 | 121.4 (5)  |
| C1—Fe1—C8—C7  | -161.8 (5) | C26—Fe2—C24—C27 | -120.6 (5) |
| C10—Fe1—C8—C7 | -79.6 (4)  | C22—Fe2—C24—C27 | 158.1 (5)  |
| C4—Fe1—C8—C7  | 77.3 (4)   | C25—Fe2—C24—C27 | -159.0 (5) |
| C3—Fe1—C8—C7  | 120.3 (4)  | C23—C22—C25—C26 | 0.5 (6)    |
| C2—Fe1—C8—C7  | 162.0 (4)  | Fe2—C22—C25—C26 | -58.7 (3)  |
| C7—C8—C9—C10  | -0.4 (6)   | C23—C22—C25—Fe2 | 59.2 (4)   |
| Fe1—C8—C9—C10 | -60.4 (4)  | C21—Fe2—C25—C22 | -170.1 (5) |
| C7—C8—C9—Fe1  | 59.9 (3)   | C20—Fe2—C25—C22 | 41.6 (12)  |
| C5—Fe1—C9—C10 | -38.8 (7)  | C18—Fe2—C25—C22 | 112.8 (5)  |
| C7—Fe1—C9—C10 | 80.1 (4)   | C17—Fe2—C25—C22 | 73.5 (5)   |
| C6—Fe1—C9—C10 | 36.9 (3)   | C19—Fe2—C25—C22 | 154.7 (5)  |
| C1—Fe1—C9—C10 | -78.4 (4)  | C24—Fe2—C25—C22 | -81.6 (4)  |
| C4—Fe1—C9—C10 | 156.9 (6)  | C23—Fe2—C25—C22 | -37.1 (3)  |
| C8—Fe1—C9—C10 | 119.1 (5)  | C26—Fe2—C25—C22 | -120.1 (5) |
| C3—Fe1—C9—C10 | -163.4 (4) | C21—Fe2—C25—C26 | -50.0 (7)  |
| C2—Fe1—C9—C10 | -121.3 (4) | C20—Fe2—C25—C26 | 161.7 (10) |
| C5—Fe1—C9—C8  | -158.0 (5) | C18—Fe2—C25—C26 | -127.1 (5) |
| C7—Fe1—C9—C8  | -39.0 (4)  | C17—Fe2—C25—C26 | -166.4 (4) |
| C6—Fe1—C9—C8  | -82.3 (4)  | C19—Fe2—C25—C26 | -85.2 (5)  |
| C1—Fe1—C9—C8  | 162.5 (3)  | C24—Fe2—C25—C26 | 38.5 (3)   |
| C10—Fe1—C9—C8 | -119.1 (5) | C23—Fe2—C25—C26 | 83.0 (3)   |
| C4—Fe1—C9—C8  | 37.8 (8)   | C22—Fe2—C25—C26 | 120.1 (5)  |
| C3—Fe1—C9—C8  | 77.5 (4)   | C22—C25—C26—C24 | -0.2 (6)   |
| C2—Fe1—C9—C8  | 119.6 (4)  | Fe2—C25—C26—C24 | -59.4 (3)  |
| C7—C6—C10—C9  | -0.1 (6)   | C22—C25—C26—Fe2 | 59.1 (4)   |
| Fe1—C6—C10—C9 | 59.7 (4)   | C23—C24—C26—C25 | -0.1 (5)   |
| C7—C6—C10—Fe1 | -59.8 (4)  | C27—C24—C26—C25 | 174.6 (4)  |
| C8—C9—C10—C6  | 0.4 (6)    | Fe2—C24—C26—C25 | 59.7 (3)   |
| Fe1—C9—C10—C6 | -60.1 (4)  | C23—C24—C26—Fe2 | -59.8 (3)  |
| C8—C9—C10—Fe1 | 60.4 (4)   | C27—C24—C26—Fe2 | 114.9 (4)  |
| C5—Fe1—C10—C6 | -76.9 (4)  | C21—Fe2—C26—C25 | 155.9 (5)  |
| C9—Fe1—C10—C6 | 119.1 (5)  | C20—Fe2—C26—C25 | -171.3 (6) |
| C7—Fe1—C10—C6 | 37.1 (4)   | C18—Fe2—C26—C25 | 74.9 (5)   |
| C1—Fe1—C10—C6 | -120.4 (4) | C17—Fe2—C26—C25 | 48.5 (11)  |
| C4—Fe1—C10—C6 | -41.1 (7)  | C19—Fe2—C26—C25 | 113.2 (5)  |
| C8—Fe1—C10—C6 | 81.4 (4)   | C24—Fe2—C26—C25 | -118.3 (5) |
| C3—Fe1—C10—C6 | 165.1 (6)  | C23—Fe2—C26—C25 | -79.7 (4)  |
| C2—Fe1—C10—C6 | -161.5 (4) | C22—Fe2—C26—C25 | -36.6 (3)  |

| C5—Fe1—C10—C9  | 164.0 (3)  | C21—Fe2—C26—C24 | -85.9 (4)  |
|----------------|------------|-----------------|------------|
| C7—Fe1—C10—C9  | -82.0 (4)  | C20—Fe2—C26—C24 | -53.1 (6)  |
| C6—Fe1—C10—C9  | -119.1 (5) | C18—Fe2—C26—C24 | -166.8 (4) |
| C1—Fe1—C10—C9  | 120.5 (4)  | C17—Fe2—C26—C24 | 166.7 (9)  |
| C4—Fe1—C10—C9  | -160.2 (5) | C19—Fe2—C26—C24 | -128.5 (4) |
| C8—Fe1—C10—C9  | -37.7 (3)  | C23—Fe2—C26—C24 | 38.6 (3)   |
| C3—Fe1—C10—C9  | 45.9 (8)   | C22—Fe2—C26—C24 | 81.7 (3)   |
| C2—Fe1—C10—C9  | 79.3 (4)   | C25—Fe2—C26—C24 | 118.3 (5)  |
| C4C5C11N1      | 91.1 (5)   | C23—C24—C27—N2  | -87.9 (5)  |
| C1C5C11N1      | -94.8 (5)  | C26—C24—C27—N2  | 98.4 (5)   |
| Fe1—C5—C11—N1  | 177.8 (3)  | Fe2—C24—C27—N2  | -174.8 (3) |
| C12—N1—C11—C5  | -177.8 (4) | C29—N2—C27—C24  | 62.5 (5)   |
| C13—N1—C11—C5  | -60.0 (5)  | C28—N2—C27—C24  | -177.7 (4) |
| C14—N1—C11—C5  | 59.9 (5)   | C30—N2—C27—C24  | -57.0 (5)  |
| C12—N1—C14—C15 | -54.8 (6)  | C29-N2-C30-C31  | 173.5 (4)  |
| C13—N1—C14—C15 | -173.7 (4) | C28-N2-C30-C31  | 54.0 (5)   |
| C11—N1—C14—C15 | 65.2 (5)   | C27—N2—C30—C31  | -65.5 (5)  |
| N1-C14-C15-C16 | 115.3 (7)  | N2-C30-C31-C32  | -118.9 (6) |
|                |            |                 |            |



